
 

Borrowed from: http://cc2e.com/Page.aspx?hid=213

 
Class Quality Checklist

 
Abstract Data Types

● Have you thought of the classes in your program as Abstract Data Types 
and evaluated their interfaces from that point of view?

 
Abstraction

● Does the class have a central purpose? 
● Is the class well named, and does its name describe its central purpose? 
● Does the class's interface present a consistent abstraction? 
● Does the class's interface make obvious how you should use the class? 
● Is the class's interface abstract enough that you don't have to think about 

how its services are implemented? Can you treat the class as a black box? 
● Are the class's services complete enough that other classes don't have to 

meddle with its internal data? 
● Has unrelated information been moved out of the class? 
● Have you thought about subdividing the class into component classes, and 

have you subdivided it as much as you can? 
● Are you preserving the integrity of the class's interface as you modify the 

class?
 
Encapsulation

● Does the class minimize accessibility to its members? 
● Does the class avoid exposing member data? 
● Does the class hide its implementation details from other classes as much 

as the programming language permits? 
● Does the class avoid making assumptions about its users, including its 

derived classes? 
● Is the class independent of other classes? Is it loosely coupled?

 
Inheritance

● Is inheritance used only to model "is a" relationships? 
● Does the class documentation describe the inheritance strategy? 
● Do derived classes adhere to the Liskov Substitution Principle? 

http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w
http://www.google.com/url?q=http%3A%2F%2Fcc2e.com%2FPage.aspx%3Fhid%3D213&sa=D&sntz=1&usg=AFQjCNGtZ2D5v5xUOKkqVQcl_3cRouJF8w


● Do derived classes avoid "overriding" non overridable routines? 
● Are common interfaces, data, and behavior as high as possible in the 

inheritance tree? 
● Are inheritance trees fairly shallow? 
● Are all data members in the base class private rather than protected?

 
Other Implementation Issues

● Does the class contain about seven data members or fewer? 
● Does the class minimize direct and indirect routine calls to other classes? 
● Does the class collaborate with other classes only to the extent absolutely 

necessary? 
● Is all member data initialized in the constructor? 
● Is the class designed to be used as deep copies rather than shallow copies 

unless there's a measured reason to create shallow copies?
 
Language-Specific Issues

● Have you investigated the language-specific issues for classes in your 
specific programming language? 

 


